首页 > 教案 > 数学教案 > 高一数学教案

【经典】高一数学教案3篇

【经典】高一数学教案3篇

  作为一名老师,总不可避免地需要编写教案,教案是教学蓝图,可以有效提高教学效率。我们该怎么去写教案呢?下面是小编为大家整理的高一数学教案,仅供参考,希望能够帮助到大家。

高一数学教案1

  一、教学目标

  1. 知识与技能:

  掌握集合的并集、交集、补集的概念及表示方法。

  能够运用集合的基本运算解决简单问题。

  2. 过程与方法:

  通过实例分析,引导学生理解集合运算的实质。

  采用讲练结合的方法,提高学生的'运算能力。

  3. 情感态度与价值观:

  培养学生的逻辑思维能力和严谨的科学态度。

  二、教学重点和难点

  重点:集合的并集、交集、补集的概念及表示方法。

  难点:运用集合的基本运算解决复杂问题。

  三、教学方法

  讲授法:通过教师讲解,引导学生理解集合运算的基本概念。

  练习法:通过大量练习,提高学生的运算能力和解题技巧。

  多媒体辅助教学:利用PPT等多媒体工具展示实例,帮助学生直观理解。

  四、教学过程

  1. 引入新课(约2分钟)

  通过复习集合的概念和表示方法,引出集合运算的重要性。

  2. 新课讲授(约20分钟)

  概念讲解:详细讲解集合的并集、交集、补集的概念及表示方法。

  实例分析:通过具体实例,引导学生理解集合运算的实质和运算规则。

  例题讲解:给出几道例题,教师边讲边练,引导学生掌握解题技巧。

  3. 巩固练习(约15分钟)

  给出几道练习题,让学生独立完成,然后小组内交流答案,教师点评。

  4. 课堂小结(约5分钟)

  总结本节课的知识点,强调集合运算的重要性,布置课后作业。

  五、教学器材

  多媒体PPT课件

  黑板及粉笔

  练习册或作业本

高一数学教案2

  一、教学目标

  1. 知识与技能:

  理解三角函数(正弦、余弦、正切)的定义,掌握特殊角的三角函数值。

  能够利用三角函数的基本关系式进行简单的计算。

  2. 过程与方法:

  通过实例引入,理解三角函数在解决实际问题中的应用。

  采用讲授与练习相结合的方法,巩固所学知识。

  3. 情感态度与价值观:

  培养学生严谨的数学态度,提高数学应用意识。

  激发学生的学习兴趣,增强学习数学的信心。

  二、教学重点和难点

  重点:三角函数的定义及其基本关系式。

  难点:理解三角函数在直角三角形中的几何意义,以及特殊角的三角函数值的记忆。

  三、教学过程

  1. 引入新课(约2分钟)

  通过展示生活中的实例(如角度测量、高度计算等),引出三角函数的学习主题。

  2. 新知讲解(约10分钟)

  讲解三角函数的定义,包括正弦、余弦、正切的定义及其几何意义。

  展示特殊角的三角函数值表,引导学生记忆并理解其意义。

  3. 例题讲解(约10分钟)

  通过例题讲解如何利用三角函数的基本关系式进行简单的计算。

  强调计算过程中的.注意事项和易错点。

  4. 课堂练习(约10分钟)

  布置课堂练习题目,让学生独立完成,教师巡回指导。

  讲解练习中的共性问题,巩固所学知识。

  5. 课堂小结(约5分钟)

  总结本节课的知识点,强调三角函数的重要性。

  布置课后作业,鼓励学生进一步巩固所学知识。

  四、教学方法

  采用讲授与练习相结合的教学方法,注重知识的巩固和应用。

  引导学生积极参与课堂讨论,培养学生的数学思维能力和解决问题的能力。

  五、教学器材

  黑板、粉笔、多媒体课件等。

高一数学教案3

  子集、全集、补集

  教学目标:

  (1)理解子集、真子集、补集、两个集合相等概念;

  (2)了解全集、空集的意义,(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

  (4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

  (5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

  (6)培养学生用集合的观点分析问题、解决问题的能力。

  教学重点:子集、补集的概念

  教学难点:弄清元素与子集、属于与包含之间的区别

  教学用具:幻灯机

  教学过程设计

  (一)导入新课

  上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识。

  提出问题(投影打出)

  已知 , , ,问:

  1、哪些集合表示方法是列举法。

  2、哪些集合表示方法是描述法。

  3、将集M、集从集P用图示法表示。

  4、分别说出各集合中的元素。

  5、将每个集合中的元素与该集合的关系用符号表示出来。将集N中元素3与集M的'关系用符号表示出来。

  6、集M中元素与集N有何关系。集M中元素与集P有何关系。

  找学生回答

  1、集合M和集合N;(口答)

  2、集合P;(口答)

  3、(笔练结合板演)

  4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

  5、 , , , , , , , (笔练结合板演)

  6、集M中任何元素都是集N的元素。集M中任何元素都是集P的元素。(口答)

  引入在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题。

  (二)新授知识

  1、子集

  (1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

  记作: 读作:A包含于B或B包含A

  当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

  性质:① (任何一个集合是它本身的子集)

  ② (空集是任何集合的子集)

  置疑能否把子集说成是由原来集合中的部分元素组成的集合?

  解疑不能把A是B的子集解释成A是由B中部分元素所组成的集合。

  因为B的子集也包括它本身,而这个子集是由B的全体元素组成的。空集也是B的子集,而这个集合中并不含有B中的元素。由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的。

  (2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

  例: ,可见,集合 ,是指A、B的所有元素完全相同。

  (3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。

  思考能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集。”

  集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

  提问

  (1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。

  (2) 判断下列写法是否正确

  ① A ② A ③ ④A A

  性质:

  (1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;

  (2)如果 , ,则 。

  例1 写出集合 的所有子集,并指出其中哪些是它的真子集。

  解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集。

  注意(1)子集与真子集符号的方向。

  (2)易混符号

  ①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}

  ②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。

  如: {0}。不能写成 ={0}, ∈{0}

  例2 见教材P8(解略)

  例3 判断下列说法是否正确,如果不正确,请加以改正。

  (1) 表示空集;

  (2)空集是任何集合的真子集;

  (3) 不是 ;

  (4) 的所有子集是 ;

  (5)如果 且 ,那么B必是A的真子集;

  (6) 与 不能同时成立。

  解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;

  (2)不正确。空集是任何非空集合的真子集;

  (3)不正确。 与 表示同一集合;

  (4)不正确。 的所有子集是 ;

  (5)正确

  (6)不正确。当 时, 与 能同时成立。

  例4 用适当的符号( , )填空:

  (1) ; ; ;

  (2) ; ;

  (3) ;

  (4)设 , , ,则A B C.

  解:(1)0 0 ;

  (2) = , ;

  (3) , ∴ ;

  (4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

  练习教材P9

  用适当的符号( , )填空:

  (1) ; (5) ;

  (2) ; (6) ;

  (3) ; (7) ;

  (4) ; (8) 。

  解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) 。

  提问:见教材P9例子

  (二) 全集与补集

  1、补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即A在S中的补集 可用右图中阴影部分表示。

  性质: S( SA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};

  (2)若A={0},则 NA=N-;

  (3) RQ是无理数集。

  2、全集:

  如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用 表示。

  注: 是对于给定的全集 而言的,当全集不同时,补集也会不同。

  例如:若 ,当 时, ;当 时,则 。

  例5 设全集 , , ,判断 与 之间的关系。

  解:∵

  :见教材P10练习

  1、填空:

  , , ,那么 , 。

  解: ,2、填空:

  (1)如果全集 ,那么N的补集 ;

  (2)如果全集, ,那么 的补集 ( )= 。

  解:(1) ;(2) 。

  (三)小结:本节课学习了以下内容:

  1、五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点)

  2、五条性质

  (1)空集是任何集合的子集。Φ A

  (2)空集是任何非空集合的真子集。Φ A (A≠Φ)

  (3)任何一个集合是它本身的子集。

  (4)如果 , ,则 。

  (5) S( SA)=A

  3、两组易混符号:(1)“ ”与“ ”:(2){0}与

  (四)课后作业:见教材P10习题

相关图文

推荐文章