八年级数学教案范文(精选10篇)
作为一位杰出的老师,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。教案应该怎么写才好呢?以下是小编帮大家整理的八年级数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
八年级数学教案 1
一、教学目标
(一)、知识与技能:
(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:
(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点
重点:因式分解的'概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程
教学环节:
活动1:复习引入
看谁算得快:用简便方法计算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ;
(2)-2.67×132+25×2.67+7×2.67= ;
(3)992–1= 。
设计意图:
如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.
注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题
P165的探究(略);
2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?
设计意图:
引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
活动3:探究新知
看谁算得准:
计算下列式子:
(1)3x(x-1)= ;
(2)(a+b+c)= ;
(3)(+4)(-4)= ;
(4)(-3)2= ;
(5)a(a+1)(a-1)= ;
根据上面的算式填空:
(1)a+b+c= ;
(2)3x2-3x= ;
(3)2-16= ;
(4)a3-a= ;
(5)2-6+9= 。
在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。
活动4:归纳、得出新知
比较以下两种运算的联系与区别:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?
八年级数学教案 2
教学目标:
1、 理解运用平方差公式分解因式的方法。
2、 掌握提公因式法和平方差公式分解因式的综合运用。
3、 进一步培养学生综合、分析数学问题的能力。
教学重点:
运用平方差公式分解因式。
教学难点:
高次指数的转化,提公因式法,平方差公式的灵活运用。
教学案例:
我们数学组的观课议课主题:
1、关注学生的合作交流
2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:
1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?
2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?
①-x2+y2 ②-x2-y2 ③4-9x2
④ (x+y)2-(x-y)2 ⑤ a4-b4
3、试总结运用平方差公式因式分解的条件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?
5、试总结因式分解的步骤是什么?
师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1: -x2+y2能用平方差公式分解,可分解为(y+x)(y-x)
生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)
师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-9x2 也能用平方差公式分解,可分解为(2+9x)(2-9x)
生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5: a4-b4可分解为(a2+b2)(a2-b2)
生6:不对,a2-b2 还能继续分解为a+b)(a-b)
师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的'差的形式,另因式分解必须分解到不能再分解为止。……
反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:
(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:
下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。
(2) 教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤ 可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。
我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。
确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有最好,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……
八年级数学教案 3
课时目标
1.掌握分式、有理式的概念。
2.掌握分式是否有意义、分式的值是否等于零的识别方法。
教学重点
正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。
教学难点:
正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。
教学时间:一课时。
教学用具:投影仪等。
教学过程:
一.复习提问
1.什么是整式?什么是单项式?什么是多项式?
2.判断下列各式中,哪些是整式?哪些不是整式?
①+m2 ②1+x+y2- ③ ④
⑤ ⑥ ⑦
二.新课讲解:
设问:不是整工式子中,和整式有什么区别?
小结:1.分式的`概念:一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。
练习:下列各式中,哪些是分式哪些不是?
(1)、、(2)、(3)、(4)、(5)x2、(6)+4
强调:(6)+4带有是无理式,不是整式,故不是分式。
2.小结:对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。
练习:课后练习P6练习1、2题
设问:(让学生看课本上P5“思考”部分,然后回答问题。)
例题讲解:课本P5例题1
分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要这引起分母不为零,分式便有意义。
(板书解题过程。)
3.小结:分式是否有意义的识别方法:当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。
增加例题:当x取什么值时,分式有意义?
解:由分母x2-4=0,得x=±2。
∴ 当x≠±2时,分式有意义。
设问:什么时候分式的值为零呢?
例:
解:当 ① 分式的值为零
八年级数学教案 4
学习目标(学习重点):
1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;
2.运用菱形的识别方法进行有关推理.
补充例题:
例1. 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.
例2.如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F.
四边形AFCE是菱形吗?说明理由.
例3.如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点
(1)试说明四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的长;
(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形.
课后续助:
一、填空题
1.如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形
2.如图,D、E、F分别是△ABC的边BC、CA、AB上的点,
且DE∥BA,DF∥ CA
(1)要使四边形AFDE是菱形,则要增加条件______________________
(2)要使四边形AFDE是矩形,则要增加条件______________________
二、解答题
1.如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。
2.如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.
(1) AC,BD互相垂直吗?为什么?
(2) 四边形ABCD是菱形 吗?
3.如图,在□ABCD中,已知ADAB,ABC的.平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。
4.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
⑴求证:ABF≌
⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.
八年级数学教案 5
教学目标:
(一)教学知识点:梯形的判别方法.
(二)能力训练要求
1.经历探索梯形的判别条件的过程,在简单的操作活动中发展学生的说理意识.
2.探索并掌握“同一底上的.两个内角相等的梯形是等腰梯形”这一判别条件.
(三)情感与价值观要求
1.通过探索梯形的判别条件,发展学生的说理意识,主动探究的习惯
2.解决梯形问题中,渗透转化思想
教学重点:梯形的判别条件
教学难点:解决梯形问题的基本方法
教学过程:
一、引入课题
上节课我们研究了特殊的梯形——等腰梯形的概念及其性质,下面我们来共同回忆一下:什么样的梯形是等腰梯形?等腰梯形有什么性质?
1.两腰相等的梯形是等腰梯形
2.等腰梯形同一底上的两个内角相等,对角线相等
怎样判定等腰梯形呢?我们这节课就来探讨等腰梯形的判定
二、讲授新课
判定:同一底上的两个内角相等的梯形是等腰梯形
问:我们能说明这种判定方法的正确性吗?
如图,在梯形ABCD中,AD∥BC,∠B=∠C
求证:梯形ABCD是等腰梯形
法一:证明:把腰DC平移到AE的位置,这时,四边形AECD是平行四边形,则AE∥CD
AE=CD,因为AE∥CE,所以∠AEB=∠C
又因为∠B=∠C,所以∠AEB=∠B
由在一个三角形中,等角对等边,得
AB=AE,所以AB=CD
因此梯形ABCD是等腰梯形
八年级数学教案 6
教学目标:
1.知识目标:通过“一分能干什么”的实践活动,体验1分的长短。
2.能力目标:知道1分=60秒,能进行简单的时间单位换算,培养学生分析、体验、估测的能力。
3.情感目标:感受数学与生活的密切联系,激发他们学习数学的兴趣,培养时间观念和爱惜时间的良好习惯。
教学重点:
建立一分钟的概念,体验一分钟时间的长短。正确进行相邻时间单位之间的转化。
教学难点:
估计1分钟有多长。
教学教法:
1.实施开放式教学,让学生主动参与数学活动,主动获取知识。
2.让学生对1分钟时间的长短有尽情独特的感受,使学生切实感受数学就在他们生活中。
3.用多媒体辅助教学,让学生在课件所创设的情境中学习,并通过合作交流发现分与秒的关系。
教学学法:
联系学生生活实际创设具体实践活动,让学生通过听一听,猜一猜、数一数、试一试、想一想、摸一摸、估一估、写一写、折一折、说一说…等灵活多样的形式亲身体验1分的长短,并发现分与秒的关系,体会时间的价值,学会做时间的小主人。
教具准备:
多媒体课件、实物钟面。
学具准备:
题卡、手工纸、文字、写字本。
教学过程:
一、情境创设,激情导入
同学们,时间老爷爷听说你们上节课表现非常好,邀请你们欣赏儿歌《时间像小马车》。大家高兴吗?让我们一起来欣赏吧!(播放一分《时间像小马车》音乐)我们欣赏到这里,谁愿意说说听了这段音乐你有什么感觉?学生一定会说这首儿歌很好听,就是太短了。老师由此引出这短短的一分钟我们能做些什么呢?从而引出新课,板书课题及副课题。这一环节的目的在于更好的集中学生的注意力,并激发学生的学习兴趣。通过听音乐初步认识1分钟有多长。为学习新知打下基础。
二、实践探索,学习新知。
这节课相对于以往的数学课来说,它的特殊之处是以体验为核心。因此这一环节教师设计了开放式的学习活动,使学生经历“参与——体验——发现——总结”的过程。
1.数心跳,体验1分钟。
这里让每个孩子通过数脉搏知道心跳1分跳多少次?通过这种实际操作,既可以活跃了课堂气氛,又让学生明白“1分钟”的概念,以自身的体会强化学生的时间观念。
分能干什么。
在这里我通过两个活动设计了全体总动员:先让每个孩子选择自己感兴趣的一项活动进行1分钟体验,并汇报活动情况。如数数、默写乘法口诀、写字、画画、做口算题、折纸等活动。然后举例说明生活中1分钟可以做哪些事?通过活动让学生体验到1分可以干很多事情。无论是学习上,还是生活中,都应该利用好时间,不能随便浪费掉1分1秒的时间。对学生进行珍惜时间的德育教育。
3.发现分与秒的关系。
在探讨分与秒的关系这一问题时,先是提问学生钟面上分针、时针的名称,进而认识秒针。学生只有明确1秒的长短,才能够更加准确、真实地知道1分的长短,为估计1分钟打基础。然后我让学生边欣赏音乐,边观察钟面,利用已有的'知识经验,通过看一看、数一数、分针与秒针的走动情况,学生发现了分与秒的关系,1分=60秒,为了加深印象,让学生随着秒针的走动数数,来进一步体验一秒与一分的关系,有效的落实了本节课的重点。
4.体验1分有多长。
通过两个活动来让学生感受1分钟的长短
①耐力体验1分钟。单脚站立,手平举。看哪个小朋友能坚持1分钟。
②观看1分钟精彩动画片《猫的集会》。(出示课件)
③交流:这时我会问:精彩动画1分钟和耐力体验1分钟,你有什么感受?
以两次活动对比的形式让学生自由说说对两种活动过程的不同的时间感受。学生一定会一致认为动画片的时间短,耐力体验的时间长。通过对比让学生明白感觉时间的长短有时还与心情和喜好有关。学生的积极参与、激情投入是这节课活动成功的基础。
三、巩固练习,拓展思维。
活动一:学生在小组内选择一项自己喜欢的学习活动,如:计算、数数等。集体计时,汇报结果。全体学生的积极参与可以增加他们的成就感,让他们感觉到在一分钟里能做这么多事情,很骄傲。
活动二:估计1分有多长。
在这一环节中,我设计了一段轻松愉快的音乐,让学生先伏桌休息自己估计1分钟时间到了就坐端正,看谁估计的时间最准确或最接近。(放音乐《兰花草》)这时课堂气氛推向,学生的学习兴趣特别浓厚。
新课标中倡导从生活中学习数学,还原于生活,指导于实践。让学生在通过大量的活动感受到了1分钟后,再去选择自己喜欢的方法来估计1分钟的长短,促进知识的进一步的巩固与应用。在设计上采用了开放式的教学,使学生的个性得到发展。
四、结合生活,课外延伸。
分钟记忆大赛。
这个环节的设计我让孩子们当导游,1分钟内看谁记住的景点多,让孩子始终处于一种亢奋状态,产生积极的情感体验。
五、全面总结,强化感受
为了帮助学生回顾本节课所学知识,总结提问:现在离下课只剩1分钟了,通过这节课的学习,你想对时间老爷爷和大家说点什么?让学生们互相交流、汇报。师总结,一寸光阴一寸金,寸金难买寸光阴,老师在这里真的希望以后你们能珍惜生活中的每一分每一秒,做个珍惜时间的孩子。
这一环节让学生再一次感受到时间的重要,一节课过得很愉快,便会觉得时间很快。让学生真正体验到学习的乐趣。出示时间格言意在进行课外延伸,激励学生,让学生珍惜时间,对学生进行了德育教育。
布置作业:回家后让父母帮忙测一测你1分能跑多少米?
通过课后实践活动继续体会1分能干什么。
板书整个板书我做到简洁明了,加深学生的印象。集中学生注意力,突出教学重点,一目了然地展现出教学的主要内容。
设计理念:
1.结合学生的生活经验。
学习不只是简单的信息积累,还包括背景经验。在经验的基础上建构知识。时间是一个非常抽象的概念,教学中结合学生的生活经验,建构认知。
2.在活动中学习。
数学学习活动,是一种手脑并重的操作。在体验1分钟和估算1分钟有多长时,让学生选择自己感兴趣的一项活动,这样在设计上采用了开放式的教学,让学生能真正感知自己在1分钟内能干多少事情。在体验了1分钟有多长后,课堂并没有机械的教学生分与秒的关系,而是进行了随着秒针走动1圈数数的练习,学生通过观察,比较,直观形象动态的实物操作,利用实物钟面直观形象来突破重点难点,进一步验证了1分=60秒。这节课设计的体验活动虽然多,但是我注重了体验的层次性,所以并不重复,而是令学生每次的体验都有不同程度的收获,让学生真正体验到自己就是学习的主人。
八年级数学教案 7
数据的波动
教学目标:
1、经历数据离散程度的探索过程
2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
教学重点:会计算某些数据的极差、标准差和方差。
教学难点:理解数据离散程度与三个差之间的关系。
教学准备:计算器,投影片等
教学过程:
一、创设情境
1、投影课本P138引例。
(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)
2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。
二、活动与探究
如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)
问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?
2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。
3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?
(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。
三、讲解概念:
方差:各个数据与平均数之差的平方的平均数,记作s2
设有一组数据:x1, x2, x3,,xn,其平均数为
则s2= ,
而s= 称为该数据的标准差(既方差的算术平方根)
从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。
四、做一做
你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的`方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?
(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)
五、巩固练习:课本第172页随堂练习
六、课堂小结:
1、怎样刻画一组数据的离散程度?
2、怎样求方差和标准差?
七、布置作业:习题5.5第1、2题。
八年级数学教案 8
一、教学目标
①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。
②理解整式除法的算理,发展有条理的思考及表达能力。
二、教学重点与难点
重点:整式除法的运算法则及其运用。
难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。
三、教学准备
卡片及多媒体课件。
四、教学设计
(一)情境引入
教科书第161页问题:木星的质量约为1.90×1024吨,地球的质量约为5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?
重点研究算式(1.90×1024)÷(5.98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。
注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。
(二)探究新知
(1)计算(1.90×1024)÷(5.98×1021),说说你计算的根据是什么?
(2)你能利用(1)中的方法计算下列各式吗?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
(3)你能根据(2)说说单项式除以单项式的运算法则吗?
注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。
单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的`渗透是新课标所强调的。
(三)归纳法则
单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。
(四)应用新知
例2计算:
(1)28x4y2÷7x3y;
(2)—5a5b3c÷15a4b。
首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。
注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。
巩固新知教科书第162页练习1及练习2。
学生自己尝试完成计算题,同桌交流。
注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。
(五)作业
1、必做题:教科书第164页习题15.3第1题;第2题。
2、选做题:教科书第164页习题15.3第8题
八年级数学教案 9
第三十四学时:14.2.1平方差公式
一、学习目标:
1.经历探索平方差公式的过程。
2.会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点
重点:平方差公式的推导和应用;
难点:理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习
你能用简便方法计算下列各题吗?
(1)2001×1999(2)998×1002
导入新课:计算下列多项式的积.
(1)(x+1)(x—1);
(2)(m+2)(m—2)
(3)(2x+1)(2x—1);
(4)(x+5y)(x—5y)。
结论:两个数的和与这两个数的差的.积,等于这两个数的平方差。
即:(a+b)(a—b)=a2—b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x—2);
(2)(b+2a)(2a—b);
(3)(—x+2y)(—x—2y)。
例2:计算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
随堂练习
计算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小结
(a+b)(a—b)=a2—b2
八年级数学教案 10
教学目标:
1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。
2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。
3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。
4、能利和计算器求一组数据的算术平均数。
教学重点:体会平均数、中位数、众数在具体情境中的意义和应用。
教学难点:对于平均数、中位数、众数在不同情境中的应用。
教学方法:归纳教学法。
教学过程:
一、知识回顾与思考
1、平均数、中位数、众数的概念及举例。
一般地对于n个数X1,……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。
如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。
中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。
众数就是一组数据中出现次数最多的那个数据。
如3,2,3,5,3,4中3是众数。
2、平均数、中位数和众数的特征:
(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。
(4)众数的可靠性较差,它不受极端数据的'影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。
3、算术平均数和加权平均数有什么区别和联系:
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4、利用计算器求一组数据的平均数。
利用科学计算器求平均数的方法计算平均数。
二、例题讲解:
例1,某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:
每人销售件数 1800 510 250 210 150 120
人数 113532
(1)求这15位营销人员该月销售量的平均数、中位数和众数;
(2)假设销售部负责人把每位营销员的月销售额定为平均数,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由。
例2,某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?
三、课堂练习:复习题A组
四、小结:
1、掌握平均数、中位数与众数的概念及计算。
2、理解算术平均数与加权平均数的联系与区别。
五、作业:复习题B组、C组(选做)