首页 > 教案 > 数学教案 > 八年级数学教案

初二数学教案模板范文

初二数学教案模板范文

  在教学工作者实际的教学活动中,时常需要用到教案,借助教案可以让教学工作更科学化。教案要怎么写呢?下面是小编为大家收集的初二数学教案模板范文,欢迎大家分享。

  一、教学目标

  1.了解二次根式的意义;

  2.掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

  3.掌握二次根式的性质和,并能灵活应用;

  4.通过二次根式的计算培养学生的逻辑思维能力;

  5.通过二次根式性质和的介绍渗透对称性、规律性的数学美.

  二、教学重点和难点

  重点:(1)二次根的意义;(2)二次根式中字母的取值范围.

  难点:确定二次根式中字母的取值范围.

  三、教学方法

  启发式、讲练结合.

  四、教学过程

  (一)复习提问

  1.什么叫平方根、算术平方根?

  2.说出下列各式的意义,并计算

  (二)引入新课

  新课:二次根式

  定义:式子叫做二次根式.

  对于请同学们讨论论应注意的问题,引导学生总结:

  (1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

  若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

  (2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

  根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

  例1当a为实数时,下列各式中哪些是二次根式?

  例2 x是怎样的实数时,式子在实数范围有意义?

  解:略.

  说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.

  例3当字母取何值时,下列各式为二次根式:

  分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.

  解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式.

  (2)-3x≥0,x≤0,即x≤0时,是二次根式.

  (3),且x≠0,∴x>0,当x>0时,是二次根式.

  (4),即,故x-2≥0且x-2≠0, ∴x>2.当x>2时,是二次根式.

  例4下列各式是二次根式,求式子中的字母所满足的条件:

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

  解:(1)由2a+3≥0,得.

  (2)由,得3a-1>0,解得.

  (3)由于x取任何实数时都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式.所以所求字母x的取值范围是全体实数.

  (4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

相关图文

推荐文章